Online Optimization in Routing and Scheduling
نویسندگان
چکیده
In this thesis we study online optimization problems in routing and scheduling. An online problem is one where the problem instance is revealed incrementally. Decisions can (and sometimes must) be made before all information is available. We design and analyze (polynomial-time) online algorithms for a variety of problems. We utilize worst-case competitive ratio (and relaxations thereof), asymptotic and Monte Carlo simulation analyses in our study of these algorithms. The focus of this thesis is on online routing problems in arbitrary metric spaces. We begin our study with online versions of the Traveling Salesman Problem (TSP) and the Traveling Repairman Problem (TRP). We then generalize these basic problems to allow for precedence constraints, capacity constraints and multiple vehicles. We give the first competitive ratio results for many new online routing problems. We then consider resource augmentation, where we give the online algorithm additional resources: faster servers, larger capacities, more servers, less restrictive constraints and advanced information. We derive new worst-case bounds that are relaxations of the competitive ratio. We also study the (stochastic) asymptotic properties of these algorithms – introducing stochastic structure to the problem data, unknown and unused by the online algorithm. In a variety of situations we show that many online routing algorithms are (quickly) asymptotically optimal, almost surely, and we characterize the rates of convergence. We also study classic machine sequencing problems in an online setting. Specifically, we look at deterministic and randomized algorithms for the problems of scheduling jobs with release dates on single and parallel machines, with and without preemption, to minimize the sum of weighted completion times. We derive improved competitive ratio bounds and we show that many well-known machine scheduling algorithms are almost surely asymptotically optimal under general stochastic assumptions. For both routing and sequencing problems, we complement these theoretical derivations with Monte Carlo simulation results. Thesis Supervisor: Patrick Jaillet Title: Edmund K. Turner Professor
منابع مشابه
MULTI-OBJECTIVE ROUTING AND SCHEDULING IN FLEXIBLE MANUFACTURING SYSTEMS UNDER UNCERTAINTY
The efficiency of transportation system management plays an important role in the planning and operation efficiency of flexible manufacturing systems. Automated Guided Vehicles (AGV) are part of diversified and advanced techniques in the field of material transportation which have many applications today and act as an intermediary between operating and storage equipment and are routed and contr...
متن کاملMulti-objective routing and scheduling for relief distribution with split delivery in post-disaster response
Following the occurrence of unexpected events and natural disasters, a highly important relief operation is the transferring of relief commodities from the distribution centers (CDs) to shelters. In this paper, a three-level network consisting of depot of vehicles, distribution centers and shelters has been considered for routing and scheduling of relief vehicles through introducing a multi-obj...
متن کاملOnline Stochastic and Robust Optimization
This paper considers online stochastic optimization problems where uncertainties are characterized by a distribution that can be sampled and where time constraints severely limit the number of offline optimizations which can be performed at decision time and/or in between decisions. It reviews our recent progress in this area, proposes some new algorithms, and reports some new experimental resu...
متن کاملThe Special Application of Vehicle Routing Problem with Uncertainty Travel Times: Locomotive Routing Problem
This paper aims to study the locomotive routing problem (LRP) which is one of the most important problems in railroad scheduling in view of involving expensive assets and high cost of operating locomotives. This problem is assigning a fleet of locomotives to a network of trains to provide sufficient power to pull them from their origins to destinations by satisfying a rich set of operational con...
متن کاملDynamic Cargo Trains Scheduling for Tackling Network Constraints and Costs Emanating from Tardiness and Earliness
This paper aims to develop a multi-objective model for scheduling cargo trains faced by the costs of tardiness and earliness, time limitations, queue priority and limited station lines. Based upon the Islamic Republic of Iran Railway Corporation (IRIRC) regulations, passenger trains enjoy priority over other trains for departure. Therefore, the timetable of cargo trains must be determined based...
متن کاملOnline Stochastic Optimization Without Distributions
This paper considers online stochastic scheduling problems where time constraints severely limit the number of optimizations which can be performed at decision time and/or in between decisions. Prior research has demonstrated that, whenever a distribution of the inputs is available for sampling, online stochatic algorithms may produce significant improvements in solution quality over oblivious ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006